

Plant species found in and around Sidpahari black stone mining area and its impact on plants

Archana Kumari Jha and Dr. Prasanjit Mukherjee,

Plant Taxonomy and Ecological Research Laboratory, Department of Botany, KKM College, Pakur Corresponding author: archana.sumanpriya@gmail.com

ABSTRACT

A survey conducted in the year 2018-2020 in and around the Sidpahari Black Stone Mining area of Hiranpur Block, Pakur reveals the presence of 82 species belonging to 33 families and 71 genera. Out of 33 families 30 families belongs to dicotyledons, whereas only 3 families belongs to monocotyledons.

Key words: Plant species, Black stone mining, Sidpahari.

INTRODUCTION

The district Pakur is situated in the north – eastern part of the Jharkhand state. It is bounded in the north by the Sahebganj district, in the east by West Bengal, in the south by Dumka district and part of West Bengal state and in the west by Dumka and Godda districts. The district is situated between 24° 49' 45" North and 24° 14' 00"North latitude and 87° 24' 00" East and 87°

55' 00" East longitude, having an area of 686.21 km2. Pakur is very famous for black stone minining industry. There are 246 mines and 255 crushers in operation where around one lakh labourers are engaged. (District Mining Survey, 2016).

Due to rapid urbanization the construction and real estate sector is at its boom. Which requires cement, concrete , sand and stone chips. The increasing demand of the stone chips for road as well building construction is putting pressure on black stone mining activities. Pakur being very famous for stone chips and bolders in the country as the quality of the black stone is of superior, the pressure to mine the black stone is much more. Hence in the district the mining is going on in a rapid pace. The same is putting pressure on the local environment. Removal of the top soil for mining , deforestation is a regular phenomena.

Sidpahari of Hiranpur block of Pakur district is one such mining area.

The floristic study is carried out in India by a number

of authors like Flora of Delhi, Floraof Presidency of Madra, Botany of Bihar and Orissa, Bengal Plants, Flora of Tamilnadu etc. Discussing about the regional floras of Jharkhand, some of the important floristic works by Ghosh 1971, Mukheree and Ghosh, 2015, Paria and Chattopadhyay, Mukherjee and Dutta, 1918, Bressers, 1951, Kumar and Pandey 1998, Sinha and Pandey, 1991, Singh et al. 2000, Singh ,2003, Verma, 1981, Verma Jha and Pandey, 1989, Verma and Singh,1990, Mukherjee and Kumar, 2020. However some of the work on impact of mining were done by Amishaebal, 2017, Anderswiderland And Bjornohlander, 2014, Bhargava, D.N. 2001, Church et al 2016., Kumar, A. and R. Pande, 1998., Mahalik G. SatapathyK.B., 2016, Nelson Julia & Schuchard R. 2009, Pawan kumar, 2013, Karmakar & Das, 2012 etc, . The current paper is the pioneer in the floristic studies and impact of black stone mining in the area.

Materials and Methods

The study area i.e. the Sidpahari Black stone mining area of Hiranpur block of Dstrict Pakur was visited at least twice or thrice in every season to trap the maximum plants in their flowering and fruiting season. The floral characters of the species concerned were noted in the field in field note book. The plants were collected, brought in the laboratory, dissected and indentified with the help of local available flora.

The impact of black stone dust was physically observed in the field on leaf and stem surface. The

nuisance caused to generation of dust and due to black stone mining and its transport were also physically observed and studied.

Result and Discussion

A total of 82 species belonging to 33 families 72 genera and 82 species. Out of 33 families 30 families belongs to dicotyledons, whereas only 3 families belongs to monocotyledons. As far genera is concerned out of 70 genera 61 belongs to dicotyledons and 9 genera belongs to monocot. Whereas out of 82 species 72 belongs to dicotyledons and 10 species belongs to monocotyledons. Fabaceae is thelargest family with 16 species followed by Poaceaeae with 6 species, Moeraceae, Lamiaceae and Apocyanaceae with 5 species each, Anacardiaceae with 4 species, Asteraceae and Combretaceae with 3 species each.Where as Asparagacea, Meliaceae, Araceae, Euphorbeaeceae, Myrtaceae, Lthraceae, Rhymacaeae, Solanaceae and Rubiacea with 2 species each. And Amaranthaceae, Simarubiacaeae, Cornacaeae, Acanthaceae, Malvaceae, Boraginaceae, Ebenacaeae, Phyllanthacae, Verbenacaeae, Sapotaceae, Moringaceae, Cactaceae, Bignonoaceae, Sapindaceae and Dipterocarpaceae have 1 species each.

A list of total no of species with their family , local name, Habitat and their belonging to Dicotyledons or monocotyledons have been given in table -1. And Total No. of Families with No. of species is given in Table-2.

Out of 82 species, 50 species falls under tree category, 17 species under the categories of herb, 12 under shrubs and 1 species falls under climber.

It was observed in the field that the stone cases nuisance for the common people residing in the vicinity of the mining areas as well as the people crossing through highways. The stone dust gives the foggy impression. The dust gets accumulated on the leaves and stem surfaces of the plants chocking the physiological functions resulting into the stunted growth of the concerned plant. Even the accumulation of the dust causes early death of the plants. The stone mines directly or in directly causing the lungs diseases to the people working in mines and residing in the vicinity of mines. The occurrence of silicosis is at its high.

References

- Amishaebal, 2017. Impact Assessment of mining achvitied on tree diversity at Limestene & Dolomite mining area-BSLC mines, Biramitrapur, odisha JounnalPhanmacognoly and Phaydochemistay.6(5).1902-1905.
- Anderswiderland And Bjornohlander, 2014. Environmental Aspects of mining, Lulea umi. Of Technology Franke Ecke, Swedish univa of agricultural science.
- Bhargava, D.N.2001, Strategy for Environmental Management in Mining and Associated Operations, Indian Bureau of Mines, Ministry of mines, Government of India.
- Bressers, J. 1951. The Botany of Ranchi District, Bihar, India.
- Church S. E., & Schmidt *et. al.* 2007, Effects Mining on the Environment – A National overview. USGS science for Changing world.
- District Survey Report of Minor Minerals, Pakur. Prepared in accordance with Para 7 (iii) of S.O.141 (E)Dated 15th January 2016 of Ministry of Environment, Forest and Climate Change Notification. Government of harkhand, District of Pakur.
- Dubey K, Dubey K P., 2011. Impact of mining on tree diversity of, the silica mining forest area at Shankargarh, Allahabad, India Journal of forestry research 35:319-327.
- Dubey, B.B., Mishra, C.P. and Pandey, D.D. 2008, Species Composition, Life form, Biological Spectrum and Importance Value Index of Grasslands of Santhal Paraganas, Jharkhand. Enviornment and Ecology 26 (2A): 848-851.
- Gamble, G. S. and Fischer, C. F. C. 1957. Flora of presidency of Madras. Vols. 1-3. Botanical Survey Of India, Culcutta.

- Ghosh T.K. 1971, Flora of Ranchi, Ph,D. Thesis, Rranchi University, Ranchi (Unpublished)
- H.N Karmakar & P.k. Das , 2012. Impact Meaning on Ground and surface water , International mines water Association.Jharkhand District mineral foundation (Trust) Rules en March (2016). The Jharkhand Gzasette Extraordinary Published Authority No.218, 3chitra, 1938 (S)
- Haines, H.H. (1921-25). *The Botany of Bihar and Orissa,* Vol. 1-3. Adland & Sons, West Newman Ltd., London.
- Henry, A. N., Kumari, G. R. and Chitra, V., 1989, Flora of Tamil Nadu, India. Series 1: Analysis. Vol. 2. BSI. Coimbatore.
- Kumar, A. and R. Pande, 1998. The tribals and the utility of the medicinal plants in their day to day lives in Santal Pargana, Bihar, India, Ecology Environmental Conservation. 4 (1-2): 65-70
- Mahalik G. SatapathyK.B., 2016. Environmental impact of Mining on biodiversity of Angul-Teacher open mining site, India scholars Academy Journal of Biosciences (SAJB), scholars Academic and Scientific Publisher (an International Published on Academic and Scientific Resources 4(3A):224-227, , ISSN 2321-6883(online).
- Maheshwari J.K. 1966. Flora of Delhi. Council of Scientific and Industrial Research.New Delhi.
- Mukherjee and Dutta 2018. Alien Invasive Flora of Santhal Pargana. National Publishers and Distributors .ISBN978-93-83583-38-6.36. Saket Nagar. Varanashi. (UP).
- Mukherjee P. and Kumar J. 2020. Floristic Studies on Aquatic and Semi aquatic Angiosperms of Major Water Bodies of Jharkhand, JIBS Centenary issue.
- Mukherjee, P. and Ghosh, T. K.2015, Aquatic and semi-aquatic angiospermic flora of Lohardaga (Jharkhand), Phytotaxonomy Vol. 15, pp. 134-145.
- Nelson Julia & Schuchard R. , 2009. Adapting to climate change : A Guide for The mining

Industry. BSR

- Paria, N. D. and S.P. Chattopadhyay.2000, Flora of Hazaribagh District, Bihar. Vol. 1. Botanical Survey of India, Calcutta.
- Pawan kumar , 2013. "The mining activity and its impact on Plant biodiversity A case study at Bhiwani open cast mining zone- Haryana, India 3(6):78-83PelagiaResearch library ISSN: 2249 -7412.
- Prain, D.1903. *Bengal Plants.* Calcutta, Vols.1-2. Reprinted Ed. 1981. Bishen Singh Mahendra Pal Singh, Dehradun,
- RADHA NAND SINGH , REG. NO. RQP/ RNC/ 145/ 2011/A, 2016. Mining Plan of Fatehpur Stone Mine of M/s Mishra Stone Works, Mouza-Fatehpur
- Singh, C.B. 2003. Forest Flora in the life and Economy of the tribals of Santhal Paraganas Jharkhand. *J. Non-Tim. For. Pr.* 10: 20-33.
- Singh. N.P., Mudgal, V., Khanna, K.K., Srivatava, S.C., Sahoo, A.K., Bandopadhyay, S., Aziz, N., Das, M., Bhattacharya, R.P. and P.K. Hazra, 2000. Flora of Bihar Analysis (Botanical Survey of India, Calcutta).
- Sinha. S.K. and A.K.Pandey, 1991, "Floristic and Ethnobotany of Rajmahal Hills, Bihar", (Final Tech. Report, A UGC Sponsored Project.).
- Unanaonwi OE & Amonum JI Jan-fib, 2017. Effect of mining. Activities On vegetation composition and nutrient Status d Forest Soil benue Cement Company, Benue state, Nigeria. IJEAB Vol-2.1-1ISSN: 2456-1878
- Verma, S.K. 1981. *Flora of Bhagalpur (Dicotyledons).* Today & Tomorrows Prin. & Publications, New Delhi, India.
- Verma, S.K. and K.K. Singh, 1990. Biotic interferences: Future threat to the flora of Rajmahal hills of Bihar, India. *Bot. Reptr.* 9: 47-51.
- Verma, S.K., R.R. Jha and A.K. Pandey, 1989, Impact of Mining on the Flora of Motijharna, Rajmahal Hills, Bihar, The India Forester, Vol.115 (12).

1	Acacia arabica	Babul	Fabaceae	Tree	D
2	Acacia catechu / Senegalia	Khair	Fabaceae	Tree	D
3	catechu	Chirchiri	Americathe	Llark	D
	Achyranthus aspara		Amaranthaceae	Herb	_
4	Adina cordifolia	Karam	Rubiaceae	Tree	D
5	Aegle marmelos	Bel	Rutaceae	Tree	D
6	Agave americana	Moraba	Asparagaceae	Shrub	M
7	Ailanthus excelsa	Ghorkaranj	Simaroubaceae	Tree	D
8	Alangium salvifolium	Dhela	Cornaceae	Small tree	D
9	Albizia lebbeck	Indian Siris	Fabaceae	Tree	D
10	Alstonia scholaris	Saptaparni	Apocyanaceae	Tree	D
11	Andrographis paniculata	Kalmegh	Acanthaceae	Herb	D
12	Anacardium occidentle	Kaju	Anacardiaceae	Tree	D
13	Anogeissus latifolia	Dhautha	Combretaceae	Tree	D
14	Arotocarpus heterophyllous	Kathal	Moraceae	Tree	D
15	Artocarpus lakoocha	Barhar	Moraceae	Tree	D
16	Asparagus racemosus	Satawar	Asparagaceae	Climber	М
17	Azadirachta indica	Neem	Meliaceae	Tree	D
18	Bambusa arundinacea	Bara bans	Poaceae	Tree	М
19	Bauhinia purpurea	Koenar	Fabaceae	Tree	D
20	Bauhinia variegata	Kachnar	Fabaceae	Tree	D
21	Bombax ceiba	Semal	Malvaceae	Tree	D
22	Borassus flabellifer	Tar	Arecaceae	Tree	М
23	Buchanania lanzan	Piar	Anacardiaceae	Tree	D
24	Butea monosperma	Palas	Fabaceae	Tree	D
25	Caldenia procumbens	Tripungkee	Boraginaceae	Herb	D
26	Calotropis gigantea	Akaon	Apocyanaceae	Shrub	D
27	Calotropis procera	Akwan	Apocyanaceae	Shrub	D
28	Cassia fistula	Amaltas	Fabaceae	Tree	D
29	Cassia tora/Senna tora	Chakor	Fabaceae	Herb	D
30	Chrysopogon aciculatus	Chorkanta	Poaceae	Herb	М
31	Clerodendron infortunatum	Bhant	Lamiaceae	Shrub	D
32	Chromolena odorata	Saitin	Astraceae	Shrub	D

Table-1. Total No. of plant species reported from in and around theSidpahari Black Stone Mining area of Hiranpur Block, Pakur.

Plant species found in and around Sidpahari black stone mining area and its impact on plants

34	Cynodon dactylon	Doob	Poaceae	Herb	M
35	Dalbergia latifolia	Kala Shisham	Fabaceae	Tree	D
36	Dalbergia sissoo	Shisham	Fabaceae	Tree	D
37	Dendrocalamus strictus	Bans/Bamboo	Poaceae	Tree	M
38	Deris pinnata	Karanj	Fabaceae	Tree	D
39	Diospyros melanoxylon	Tend/Kend/Tiril	Ebenaceae	Tree	D
40	Emblica officinalis	Amla	Phyllanthaceae	Tree	D
40	Eucalyptus procera	Eucalyptus	Myrtaceae	Tree	D
41 42	Euphorbia hirta	Dudhi	Euphorbiaceae	Herb	D
42 43	Ficus benghalensis		Moraceae		D
	5	Banyan		Tree	_
44	Ficus hispida	Hairy Fig	Moraceae	Tree	D
45	Ficus religiosa	Pipal	Moraceae	Tree	D
46	Flemingia chappar	Galphuli	Fabaceae	Shrub -	D
47	Gmelina arborea	Gamhar	Lamiaceae	Tree	D
48	Indigofera pulchra	Jirhul	Fabaceae	Herb	D
49	Lagerostroemia parviflora	Sidha	Lythraceae	Tree	D
50	Lantana camara	Putus	Verbanaceae	Shrub	D
51	Leucas aspera	Thumba	Lamiaceae	Herb	D
52	Madhuca latifolia	Mahua	Sapotaceae	Tree	D
53	Mangifera indica	Mango	Anacardiaceae	Tree	D
54	Melia azedarach	Bakain	Meliaceae	Tree	D
55	Mimosa pudica	Lajwanti	Fabaceae	Herb	D
56	Morinda tinctoria	Aal	Rubiaceae	Tree	D
57	Moringa oleifera	Drumstick Tree	Moringaceae	Tree	D
58	Nerium odorum	Coti kanail	Apocyanaceae	Shrub	D
59	Opuntia dilleni	Nagphani	Cactaceae	Shrub	D
60	Oroxylum indicum	Sonapatta	Bignoniaceae	Tree	D
61	Phoenix dactylifera	Date Palm	Arecaceae	Tree	М
62	Saccharum munja	Munj	Poaceae	Herb	Μ
63	Saccharum officinarum	Kas	Poaceae	Herb	М
64	Schleichera oleosa	Kusum	Sapindaceae	Tree	D
65	Semecarpus anacardium	Bhelwa	Anacardiaceae	Tree	D
66	Shorea robusta	Sal	Dipterocarpaceae	Tree	D
67	Solanum nigrum	Makoi	Solanaceae	Herb	D
68	Solanum Xanthocarpum	Rengni	Solanaceae	Herb	D

70					
70	Syzygium Cumini	Jamun	Myrtaceae	Tree	D
71	Tamarindus indica	Imli	Fabaceae	Tree	D
72	Tectona grandis	Sagwan/Teak	Lamiaceae	Tree	D
73	Tephrosia purpurea	Sarpuka	Fabaceae	Herb	D
74	Theuvetia pruviana	Kanail	Apocyanaceae	Tree	D
75	Terminalia arjuna	Arjun	Combretaceae	Tree	D
76	Terminalia tomentosa	Asan	Combretaceae	Tree	D
77	Tridex procumbens	Coat buttons	Asteraceae	Herb	D
78	Vitex negundo	Sindwar	Lamiaceae	Shrub	D
79	Wendlandia exerta	Tilia/Tiril	Rubiaceae	Tree	D
80	Woodfordia fruticosa	Dhawai	Lythraceae	Shrub	D
81	Zizyphus jujuba	Katber	Rhymaceae	Tree	D
82	Zizyphus maurtiana	Ber	Rhymaceae	Shrub	D

Table-2. Total No. of Families with No. of species

-			
1.	Acanthaceae	Dicot	01
2.	Amaranthaceae	Dicot	01
3.	Anacardiaceae	Dicot	04
4.	Apocyanaceae	Dicot	05
5.	Arecaceae	Monocot	02
6.	Asparagaceae	Monocot	02
7.	Asteraceae	Dicot	02
8.	Bignoniaceae	Dicot	01
9.	Boraginaceae	Dicot	01
10.	Cactaceae	Dicot	01
11.	Combretaceae	Dicot	03
12.	Cornaceae	Dicot	01
13.	Dipterocarpaceae	Dicot	01
14.	Ebenaceae	Dicot	01
15.	Euphorbiaceae	Dicot	02
16.	Fabaceae	Dicot	15
17.	Lamiaceae	Dicot	05
18.	Lythraceae	Dicot	02
19.	Malvaceae	Dicot	01
20.	Meliaceae	Dicot	03

Plant species found in and around Sidpahari black stone mining area and its impact on plants

21.	Moraceae	Dicot	05
22.	Moringaceae	Dicot	01
23.	Myrtaceae	Dicot	02
24.	Phyllanthaceae	Dicot	01
25.	Poaceae	Monocot	06
26.	Rhymaceae	Dicot	02
27.	Rubiaceae	Dicot	03
28.	Rutaceae	Dicot	01
29.	Sapindaceae	Dicot	01
30.	Sapotaceae	Dicot	01
31.	Simaroubaceae	Dicot	01
32.	Solanaceae	Dicot	02
33.	Verbanaceae	Dicot	01

PLATE -1SHOWING PIC OF SIDPAHARI BLACK STONE MINING AREA

Removal of Top Soil, for minining at Sidpahari

Black Stone Mines at Sidpahari

An abundant black stone mines at Sidpahari, turned into water reservoir